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This document provides additional details regarding ICCV paper “Active Stereo Without Pattern Projector”.

Midd-A
rx ry λ γ t Accuracy Precision Recall F1-Score
9 7 3 0.2857 2 98.6 92.8 93.7 93.2
9 7 2 0.5714 3 98.6 92.7 93.8 93.2
9 7 3 0.5000 1 98.6 92.7 93.8 93.2
9 7 3 0.7143 2 98.6 92.9 93.6 93.2
9 7 3 0.5714 2 98.6 92.8 93.7 93.2
9 7 3 0.7857 3 98.6 93.0 93.4 93.2
9 7 3 1.0000 3 98.6 92.8 93.6 93.2
9 7 3 0.2143 3 98.6 93.0 93.5 93.2
9 7 2 0.5000 3 98.6 92.6 93.8 93.2
9 7 3 0.7143 1 98.6 92.6 93.9 93.2
9 7 3 0.7857 2 98.6 92.8 93.6 93.2
9 7 3 0.3571 3 98.6 93.0 93.5 93.2
9 7 3 0.5000 2 98.6 92.8 93.6 93.2
9 7 3 0.8571 2 98.6 92.8 93.6 93.2
9 7 2 0.3571 3 98.6 92.7 93.7 93.2
9 7 3 0.2857 1 98.6 92.6 93.8 93.2
9 7 3 0.7857 1 98.6 92.6 93.8 93.1
9 7 2 0.7857 2 98.6 92.5 93.9 93.1
9 7 2 0.6429 2 98.6 92.5 93.9 93.1
9 7 2 0.6429 3 98.6 92.7 93.7 93.1
9 7 3 0.2143 2 98.6 92.7 93.6 93.1
9 7 3 0.3571 1 98.6 92.6 93.8 93.1
9 7 2 0.8571 3 98.6 92.6 93.8 93.1
9 7 2 0.2857 3 98.6 92.6 93.8 93.1
9 7 3 0.3571 2 98.6 92.7 93.7 93.1
9 7 3 0.2143 1 98.5 92.5 93.9 93.1
9 7 2 0.7143 3 98.6 92.6 93.8 93.1
9 7 3 0.5714 1 98.6 92.6 93.7 93.1
9 7 3 0.2857 3 98.6 92.9 93.5 93.1
9 7 3 0.1429 2 98.6 92.6 93.7 93.1
9 7 2 0.3571 2 98.6 92.5 93.9 93.1
9 7 2 0.4375 3 98.5 92.6 93.8 93.1
9 7 2 0.1429 3 98.6 92.6 93.8 93.1
9 7 2 0.4375 2 98.5 92.4 94.0 93.1
9 7 3 0.6429 1 98.6 92.6 93.8 93.1
9 7 3 0.5000 3 98.6 93.0 93.3 93.1
9 7 2 0.2857 2 98.5 92.5 93.9 93.1
9 7 3 0.4375 2 98.6 92.7 93.6 93.1
9 7 2 0.5714 2 98.5 92.5 93.9 93.1
9 7 3 0.8571 3 98.6 92.9 93.5 93.1
9 7 3 0.7143 3 98.6 93.0 93.3 93.1
9 7 3 0.4375 1 98.6 92.6 93.7 93.1
9 7 2 0.5000 2 98.5 92.5 93.9 93.1
9 7 2 0.7143 2 98.5 92.4 93.9 93.1
9 7 3 0.5714 3 98.6 92.9 93.4 93.1
9 7 3 0.6429 3 98.6 93.0 93.3 93.1
9 7 3 0.6429 2 98.6 92.8 93.5 93.1
9 7 2 0.2143 3 98.5 92.6 93.7 93.1
9 7 2 1.0000 3 98.5 92.6 93.7 93.1
9 7 2 0.4375 1 98.5 92.3 94.1 93.1

Table I: Occlusion handling – grid
search. We evaluate the effect of the
hyper-parameters rx, ry, λ, γ, t.

We used 5% of sparse depth points for all the experiments reported in this
document.

1. Occlusion handling – Heuristic grid search
In this section, we report further details about our occlusion handling

methodology used to estimate the occluded points in VPP. We performed
a grid search to find the optimal hyper-parameters for the heuristic func-
tion used for this purpose. Specifically, we fixed the range of rx and ry
to 5, 7, 9, 11, 13, and λ ∈ 1, 2, 3, γ ∈ {0, 0.0714, 0.1429, 0.2143, 0.2857,
0.3571, 0.4286, 0.5, 0.5714, 0.6429, 0.7143, 0.7857, 0.8571, 0.9286, 1}, and
t ∈ 1, 2, 3. To evaluate the effect of each configuration, we used the Mid-
dlebury [10] Additional split (Midd-A), over which we measure how good
our heuristic is at classifying pixels as occluded by reporting accuracy, pre-
cision, recall and F1-score metrics. The grid search results are shown in
Table I, showing only the top-50 entries sorted by F1-Score. We found that
rx and ry were the most important hyper-parameters, as they remained the
same for all top-50 entries. Furthermore, λ preferred values greater than one
(i.e., none of the top-50 configuration uses λ = 1), while γ and t were less
influential hyper-parameters. These findings suggest that the choice of rx
and ry is crucial in estimating occluded points accurately and that increasing
the value of λ can lead to improved performance.

All fifty configurations selected during the grid search show comparable
performance based on F1-score. However, we chose rx = 9, ry = 7, λ = 2,
γ = 0.4375, and t = 1, as they provided a slight improvement in recall. We
argue that reducing false negative classification errors could be beneficial,
as points classified as occluded are still projected in the “FGD”-projection
configuration and thus could lead to ambiguities if not properly detected.

2. Complete Ablation Experiment
We extend the ablation study reported in the main paper (Tab. 1) with

an exhaustive study with a larger number of configurations. Tab. II collects
the results achieved by playing with the three occlusion handling strategies
– i.e., “BKGD”, “NO”, and “FGD”, respectively, in sub-tables (a), (b) and
(c) –, the different virtual patterns (ii)-(vii) presented in the main paper, and
also measuring the impact of Alpha-blending (α) with different intensities

https://vppstereo.github.io/


Midd-A
VPP hyper-parameters Error Rate (%) > 2

Pattern α Patch Occ. RAFT-St. [4] PSMNet [1] rSGM
✗ ✗ ✗ ✗ ✗ 11.5 29.3 34.3
✓ (ii) ✗ ✗ BKGD 5.2 15.3 20.6
✓ (ii) 0.8 ✗ BKGD 5.3 15.5 20.7
✓ (ii) 0.4 ✗ BKGD 5.8 16.7 21.2
✓ (iii) ✗ ✗ BKGD 5.1 15.2 20.2
✓ (iii) 0.8 ✗ BKGD 5.2 15.3 20.3
✓ (iii) 0.4 ✗ BKGD 5.6 16.1 20.5
✓ (vi) ✗ 3× 3 BKGD 5.2 16.0 15.5
✓ (vi) 0.8 3× 3 BKGD 5.1 15.7 15.5
✓ (vi) 0.4 3× 3 BKGD 5.0 15.3 15.9
✓ (iv) ✗ 3× 3 BKGD 4.8 16.0 16.6
✓ (iv) 0.8 3× 3 BKGD 4.8 15.6 16.5
✓ (iv) 0.4 3× 3 BKGD 4.9 15.0 16.7
✓ (vii) ✗ 3× 3 BKGD 4.9 16.1 16.0
✓ (vii) 0.8 3× 3 BKGD 4.9 15.8 15.9
✓ (vii) 0.4 3× 3 BKGD 5.0 15.2 15.9
✓ (v) ✗ 3× 3 BKGD 4.8 16.4 16.6
✓ (v) 0.8 3× 3 BKGD 4.8 15.9 16.3
✓ (v) 0.4 3× 3 BKGD 5.0 15.1 16.2
✓ (vi) ✗ 5× 5 BKGD 5.8 17.9 14.8
✓ (vi) 0.8 5× 5 BKGD 5.5 17.1 14.8
✓ (vi) 0.4 5× 5 BKGD 5.0 15.7 14.9
✓ (iv) ✗ 5× 5 BKGD 5.3 18.0 18.8
✓ (iv) 0.8 5× 5 BKGD 5.2 17.3 17.1
✓ (iv) 0.4 5× 5 BKGD 5.0 15.8 17.0
✓ (vii) ✗ 5× 5 BKGD 5.3 17.8 15.9
✓ (vii) 0.8 5× 5 BKGD 5.0 17.2 15.6
✓ (vii) 0.4 5× 5 BKGD 4.9 16.0 15.5
✓ (v) ✗ 5× 5 BKGD 5.2 18.1 19.3
✓ (v) 0.8 5× 5 BKGD 5.1 17.5 17.3
✓ (v) 0.4 5× 5 BKGD 4.9 16.3 16.9

Midd-A
VPP hyper-parameters Error Rate (%) > 2

Pattern α Patch Occ. RAFT-St. [4] PSMNet [1] rSGM
✗ ✗ ✗ ✗ ✗ 11.5 29.3 34.3
✓ (ii) ✗ ✗ FGD 5.2 15.0 20.5
✓ (ii) 0.8 ✗ FGD 5.3 15.3 20.6
✓ (ii) 0.4 ✗ FGD 5.8 16.6 21.1
✓ (iii) ✗ ✗ FGD 5.2 14.9 20.1
✓ (iii) 0.8 ✗ FGD 5.3 15.0 20.2
✓ (iii) 0.4 ✗ FGD 5.6 16.0 20.5
✓ (vi) ✗ 3× 3 FGD 4.8 14.9 14.9
✓ (vi) 0.8 3× 3 FGD 4.8 14.7 15.1
✓ (vi) 0.4 3× 3 FGD 5.0 14.6 15.6
✓ (iv) ✗ 3× 3 FGD 4.6 14.7 15.7
✓ (iv) 0.8 3× 3 FGD 4.6 14.6 15.7
✓ (iv) 0.4 3× 3 FGD 4.8 14.4 16.1
✓ (vii) ✗ 3× 3 FGD 4.6 14.8 15.2
✓ (vii) 0.8 3× 3 FGD 4.6 14.7 15.1
✓ (vii) 0.4 3× 3 FGD 4.8 14.4 15.3
✓ (v) ✗ 3× 3 FGD 4.5 14.8 15.5
✓ (v) 0.8 3× 3 FGD 4.5 14.6 15.3
✓ (v) 0.4 3× 3 FGD 4.8 14.4 15.6
✓ (vi) ✗ 5× 5 FGD 4.6 15.6 13.6
✓ (vi) 0.8 5× 5 FGD 4.6 15.2 13.7
✓ (vi) 0.4 5× 5 FGD 4.7 14.7 14.0
✓ (iv) ✗ 5× 5 FGD 4.4 15.4 17.0
✓ (iv) 0.8 5× 5 FGD 4.3 15.1 15.4
✓ (iv) 0.4 5× 5 FGD 4.6 14.7 15.8
✓ (vii) ✗ 5× 5 FGD 4.3 15.6 14.3
✓ (vii) 0.8 5× 5 FGD 4.3 15.2 14.1
✓ (vii) 0.4 5× 5 FGD 4.5 14.6 14.3
✓ (v) ✗ 5× 5 FGD 4.3 15.5 17.3
✓ (v) 0.8 5× 5 FGD 4.3 15.2 15.4
✓ (v) 0.4 5× 5 FGD 4.4 14.7 15.4

Midd-A
VPP hyper-parameters Error Rate (%) > 2

Pattern α Patch Occ. RAFT-St. [4] PSMNet [1] rSGM
✗ ✗ ✗ ✗ ✗ 11.5 29.3 34.3
✓ (ii) ✗ ✗ NO 5.3 15.2 20.5
✓ (ii) 0.8 ✗ NO 5.4 15.4 20.7
✓ (ii) 0.4 ✗ NO 5.8 16.6 21.2
✓ (iii) ✗ ✗ NO 5.2 15.0 20.2
✓ (iii) 0.8 ✗ NO 5.3 15.2 20.3
✓ (iii) 0.4 ✗ NO 5.6 16.0 20.5
✓ (vi) ✗ 3× 3 NO 5.1 15.5 15.1
✓ (vi) 0.8 3× 3 NO 5.0 15.2 15.2
✓ (vi) 0.4 3× 3 NO 5.1 14.9 15.7
✓ (iv) ✗ 3× 3 NO 4.8 15.3 15.9
✓ (iv) 0.8 3× 3 NO 4.8 15.1 15.8
✓ (iv) 0.4 3× 3 NO 4.9 14.7 16.2
✓ (vii) ✗ 3× 3 NO 4.8 15.5 15.4
✓ (vii) 0.8 3× 3 NO 4.8 15.4 15.2
✓ (vii) 0.4 3× 3 NO 4.9 14.9 15.4
✓ (v) ✗ 3× 3 NO 4.7 15.5 15.7
✓ (v) 0.8 3× 3 NO 4.8 15.3 15.5
✓ (v) 0.4 3× 3 NO 4.9 14.8 15.7
✓ (vi) ✗ 5× 5 NO 5.2 16.3 13.8
✓ (vi) 0.8 5× 5 NO 5.1 15.9 13.8
✓ (vi) 0.4 5× 5 NO 5.0 15.2 14.3
✓ (iv) ✗ 5× 5 NO 4.9 16.4 17.0
✓ (iv) 0.8 5× 5 NO 4.9 16.0 15.5
✓ (iv) 0.4 5× 5 NO 4.9 15.2 15.8
✓ (vii) ✗ 5× 5 NO 4.8 16.4 14.4
✓ (vii) 0.8 5× 5 NO 4.8 16.2 14.2
✓ (vii) 0.4 5× 5 NO 4.8 15.5 14.5
✓ (v) ✗ 5× 5 NO 4.8 16.6 17.4
✓ (v) 0.8 5× 5 NO 4.7 16.2 15.5
✓ (v) 0.4 5× 5 NO 4.8 15.5 15.6

(a) (b) (c)

Table II: Ablation on main projection hyper-parameters. Results on Midd-A. Networks trained on synthetic data.

(none (i.e., 1.0, 0.4 and 0.8) and the patch size (none (i.e., 1 × 1), 3 × 3 or
5× 5).

As in the main paper, we study the impact of the different VPP config-
urations on the disparity maps predicted by RAFT-Stereo [4], PSMNet [1] or estimated by the rSGM algorithm [7] on the
Middlebury [10] Additional split (Midd-A). For RAFT-Stereo and PSMNet, we use weights obtained after training on syn-
thetic images only. From a first look, we can notice how determining the best overall configuration is not trivial: indeed, the
configuration we select for the experiments in the main paper (in yellow) is not the absolute winner in this study, yet allowing
to outperform existing techniques already [6, 2]. Nonetheless, from this exhaustive study, we draw some general take-home
messages to define the best set of configurations to deploy VPP.

Occlusion-handling. By comparing sub-tables (a), (b) and (c), we can notice that a proper handling of the pattern
projection near occlusions is helpful, most times, to attain the best results. Indeed, applying the virtual pattern according to
“FGD” strategy (b) – i.e., by encouraging the matching of an occluded region with its own occluder – yields better results
with respect to not handling occlusions at all (a) or to the naı̈ve projection of the pattern in the not occluded regions only (c),
when the remaining hyper-parameters remain unchanged.

Patch size. In general, projecting a pattern on local patches (iv)-(vii) rather than single pixels (ii)-(iii) yields better results.
Not surprisingly, acting on a local region allows for easing the visual correspondence task much more than intervening on
single pixels alone. Increasing the patch size from 3× 3 to 5× 5 can further improve the results with rSGM, while it yields
mixed results with RAFT-Stereo (often improving) and PSMNet (which seems to benefit more from 3 × 3 patches). We
argue that this behavior is caused by the higher-level cues used by deep stereo networks to perform matching, not necessarily
affected by the local visual distinctiveness in the same manner as traditional algorithms.

Alpha-blending (α). Since image content is crucial for modern stereo networks to compute correspondences, a proper
Alpha-blending of the projected pattern with the original color images is often beneficial. In particular, it allows for compen-
sating for the possibly erroneous correspondence being enforced by large patches near object boundaries. On the contrary,
Alpha-blending always reduces the effectiveness of the virtual pattern when running rSGM, since it dampens the high dis-
tinctiveness of the pattern, which is crucial to ease correspondences when using hand-crafted matching functions.

Different networks/algorithms. Finally, our exhaustive ablation study highlights how different stereo networks and
algorithms react differently to the configurations we experimented. Indeed, depending on the network or algorithm, we have
different configurations yielding the best results. Specifically, RAFT-stereo [4] obtains the best results with 5 × 5 patterns
(iv)-(v) or (vii), often by setting a high Alpha-blending factor (α = 0.8) or no Alpha-blending factor at all (α = 1.0); PSMNet
[1], on the contrary, registers the best improvement with 3× 3 patterns (iv)-(v) or (vii) and a moderate Alpha-blending factor
(α = 0.4); finally, rSGM [7] attains the best results with 5×5 pattern (vi), without any Alpha-blending being applied. For this
reason, we selected a configuration for our main experiments that could balance the accuracy of the three methods without
favoring any in particular.



Midd-14 Midd-21 ETH3D KITTI 142
Depth Points Error Rate std. (%) avg. std. Error Rate std. (%) avg. std. Error Rate std. (%) avg. std. Error Rate std. (%) avg. std.

Model Model name Train Test > 1 > 2 > 3 > 4 (px) > 1 > 2 > 3 > 4 (px) > 1 > 2 > 3 > 4 (px) > 1 > 2 > 3 > 4 (px)
RAFT-Stereo-vpp [4] Sceneflow ✗ ✓ 0.06 0.05 0.05 0.07 0.04 0.00 0.02 0.00 0.02 0.00 0.10 0.08 0.07 0.06 0.01 0.00 0.00 0.00 0.00 0.00
RAFT-Stereo-vpp [4] Middlebury ✗ ✓ 0.06 0.07 0.09 0.08 0.02 0.06 0.07 0.05 0.06 0.02 0.07 0.05 0.04 0.03 0.00 0.03 0.00 0.02 0.01 0.00
RAFT-Stereo-vpp [4] ETH3D ✗ ✓ 0.08 0.08 0.11 0.13 0.02 0.04 0.04 0.04 0.03 0.01 0.03 0.03 0.04 0.03 0.01 0.02 0.02 0.01 0.01 0.00
GMStereo-vpp∗ [11] Sceneflow ✗ ✓ 0.01 0.01 0.05 0.06 0.01 0.05 0.04 0.05 0.05 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GMStereo-vpp∗ [11] Mixdata ✗ ✓ 0.00 0.03 0.02 0.02 0.00 0.07 0.03 0.05 0.06 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CFNet-vpp∗ [9] Sceneflow ✗ ✓ 0.12 0.11 0.10 0.09 0.23 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CFNet-vpp∗ [9] Middlebury ✗ ✓ 0.04 0.03 0.02 0.03 0.02 0.01 0.01 0.01 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HSMNet-vpp [12] Middlebury ✗ ✓ 0.02 0.00 0.01 0.02 0.00 0.06 0.01 0.01 0.00 0.01 0.14 0.02 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00
CREStereo-vpp∗ [3] ETH3D ✗ ✓ 0.04 0.02 0.04 0.04 0.01 0.04 0.04 0.06 0.05 0.03 0.05 0.03 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00
PSMNet-vpp [1] Sceneflow ✗ ✓ 0.07 0.06 0.05 0.04 0.02 0.01 0.00 0.01 0.00 0.00 0.03 0.04 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00
rSGM-vpp [7] - ✗ ✓ 0.01 0.02 0.00 0.01 0.09 0.00 0.00 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Table III: Stability of random pattern of type (vi). We present an analysis of the standard deviation of type (vi) virtual
pattern based on a sample size of 5. Our findings indicate that, despite the non-deterministic nature of this pattern, the
observed errors exhibit stability. ∗ uses α = 0.2 for blending.

3. Stability of random pattern
As stated in the main paper, the random patch pattern (vi) proposed and utilized is a non-deterministic technique. To

assess the stability of this approach concerning artifacts, we conduct five inference runs to compute the standard deviation
for various stereo methods, as many as we used in the main paper to calculate the mean errors. Our results, as shown in Table
III, demonstrate that despite the non-deterministic nature of the approach, errors remain relatively constant. This evidence
indicates that this pattern can be effectively employed in diverse environments and attain stable results. Specifically, the
standard deviation remains below 0.14% for any error rate threshold and below 0.1 px for avg. error, except for CFNet [9]
being slightly less stable (0.23 px on Midd-14).

4. Additional implementation details
When evaluating the accuracy of stereo algorithms and networks with and without VPP, different resizing strategies were

applied to the input images, often following the suggestions of the original authors.
RAFT-Stereo [4] and HSMNet [12] were evaluated using the original image resolution on Middlebury 2014 [7], Middle-

bury 2021 [10], ETH3D [8], and KITTI [5] datasets. CFNet [9], rSGM [7], and PSMNet [1] were evaluated using half the
original image resolution on Middlebury 2014 and Middlebury 2021 (because of memory limitations). GMStereo [11] and
CREStereo [3] on Middlebury 2014 and Middlebury 2021 were evaluated with image resizing to 1024 × 1536. GMStereo
on ETH3D was evaluated with image resizing to 512× 768, while CREStereo on ETH3D was evaluated with image resizing
to 768 × 1024. GMStereo on KITTI was evaluated with image resizing to 352 × 1216, while CREStereo on KITTI was
evaluated with image resizing to 1024× 1536.

5. Qualitative results
We conclude by showing some additional qualitative results to support the effectiveness of VPP further.
Middlebury 2021. Fig. I shows a scene from the Middlebury 2021 dataset, in which we sample 5% points from the

ground-truth to project our virtual pattern. We test four stereo networks trained on synthetic data and the rSGM algorithm.
We can notice how the original disparity maps suffer from several artifacts and, in most cases, very high error rates. Only
RAFT-Stereo achieves reasonable results. In contrast, by enabling VPP, the results by any method fall below 13% error rate,
with RAFT-Stereo achieving a bad2 error lower than 2%. To better highlight the effect of VPP on images, we show both the
original and hallucinated frames in Fig. II.

KITTI 2015. Fig. III shows an example from the KITTI 2015 training set. Specifically, we select the 000104 stereo pair,
being known by practitioners in the field for its very low exposure. Since raw LiDAR measurements are not available for this
specific pair, we sample again 5% points from ground-truth. We can appreciate how, even in this prohibitive environment,
VPP can largely improve the results of stereo networks and the rSGM algorithm. To better highlight the effect of VPP on
images, we show both the original and hallucinated frames in Fig. IV.



Model RGB left RGB right Disparity map map VPP left VPP right VPP disparity map
Error Rate (> 2) % Error Rate (> 2) %

PSMNet [1]

74.36 7.16

RAFT-Stereo [4]

15.91 1.94

CFNet∗ [9]

77.76 11.59

GMStereo∗ [11]

81.40 8.65

rSGM [7]

81.31 12.70

Figure I: Cross-domain generalization enhancement: qualitative results on indoor. All networks are trained on synthetic
data and tested on an unseen scenario (Midd-21, scene podium1): our VPP approach significantly improves cross-domain
generalization compared to the vanilla baselines. Additionally, traditional stereo algorithms, such as rSGM, also benefit from
our approach. ∗ uses α = 0.2 for blending.

RGB Left RGB Right

VPP Left VPP Right
Figure II: Qualitative view of virtual pattern in indoor scenario. Midd-21, scene podium1



Model RGB left RGB right Disparity map map VPP left VPP right VPP disparity map
Error Rate (> 3) % Error Rate (> 3) %

PSMNet [1]

69.81 1.04

RAFT-Stereo [4]

72.0 0.78

CFNet [9]

99.98 57.77

GMStereo∗ [11]

66.48 2.94

rSGM [7]

72.00 5.40

Figure III: Cross-domain generalization enhancement: qualitative results on outdoor. All networks are trained on syn-
thetic data and tested on an unseen scenario (KITTI 2015, scene 104): our VPP approach significantly improves cross-domain
generalization compared to the vanilla baselines, except for CFNet which achieves mild results. Additionally, traditional
stereo algorithms, such as rSGM, also benefit from our approach. ∗ uses α = 0.2 for blending.

RGB Left RGB Right

VPP Left VPP Right
Figure IV: Qualitative view of virtual pattern in outdoor scenario. KITTI 2015, scene 104
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